- 相關(guān)推薦
數(shù)學(xué)解題方法
數(shù)學(xué)解題方法1
高中數(shù)學(xué)?碱}型答題技巧與方法

1、解決絕對(duì)值問題
主要包括化簡(jiǎn)、求值、方程、不等式、函數(shù)等題,基本思路是:把含絕對(duì)值的問題轉(zhuǎn)化為不含絕對(duì)值的問題。
具體轉(zhuǎn)化方法有:
、俜诸愑懻摲:根據(jù)絕對(duì)值符號(hào)中的數(shù)或式子的正、零、負(fù)分情況去掉絕對(duì)值。
、诹泓c(diǎn)分段討論法:適用于含一個(gè)字母的多個(gè)絕對(duì)值的情況。
③兩邊平方法:適用于兩邊非負(fù)的方程或不等式。
、軒缀我饬x法:適用于有明顯幾何意義的情況。
2、因式分解
根據(jù)項(xiàng)數(shù)選擇方法和按照一般步驟是順利進(jìn)行因式分解的重要技巧。因式分解的一般步驟是:
提取公因式;選擇用公式;十字相乘法;分組分解法;拆項(xiàng)添項(xiàng)法;
3、配方法。利用完全平方公式把一個(gè)式子或部分化為完全平方式就是配方法,它是數(shù)學(xué)中的重要方法和技巧。配方法的主要根據(jù)有:
4、換元法。解某些復(fù)雜的特型方程要用到“換元法”。換元法解方程的一般步驟是:設(shè)元→換元→解元→還元
5、待定系數(shù)法。待定系數(shù)法是在已知對(duì)象形式的條件下求對(duì)象的一種方法。適用于求點(diǎn)的坐標(biāo)、函數(shù)解析式、曲線方程等重要問題的解決。其解題步驟是:①設(shè)②列③解④寫
6、復(fù)雜代數(shù)等式。復(fù)雜代數(shù)等式型條件的使用技巧:左邊化零,右邊變形。
、僖蚴椒纸庑停(-----)(----)=0兩種情況為或型
、谂涑善椒叫停(----)2+(----)2=0兩種情況為且型
7、數(shù)學(xué)中兩個(gè)最偉大的解題思路
(1)求值的思路列欲求值字母的方程或方程組
(2)求取值范圍的思路列欲求范圍字母的不等式或不等式組
8、化簡(jiǎn)二次根式;舅悸肥牵喊选蘭化成完全平方式。即:
9、觀察法
10、代數(shù)式求值
方法有:
(1)直接代入法
(2)化簡(jiǎn)代入法
(3)適當(dāng)變形法(和積代入法)
注意:當(dāng)求值的代數(shù)式是字母的“對(duì)稱式”時(shí),通常可以化為字母“和與積”的形式,從而用“和積代入法”求值。
11、解含參方程。方程中除過未知數(shù)以外,含有的其它字母叫參數(shù),這種方程叫含參方程。解含參方程一般要用‘分類討論法’,其原則是:
(1)按照類型求解
(2)根據(jù)需要討論
(3)分類寫出結(jié)論
12、恒相等成立的有用條件
(1)ax+b=0對(duì)于任意x都成立關(guān)于x的方程ax+b=0有無(wú)數(shù)個(gè)解a=0且b=0。
(2)ax2+bx+c=0對(duì)于任意x都成立關(guān)于x的方程ax2+bx+c=0有無(wú)數(shù)解a=0、b=0、c=0。
13、恒不等成立的條件。由一元二次不等式解集為R的有關(guān)結(jié)論容易得到下列恒不等成立的條件:
14、平移規(guī)律。圖像的.平移規(guī)律是研究復(fù)雜函數(shù)的重要方法。平移規(guī)律是:
15、圖像法。討論函數(shù)性質(zhì)的重要方法是圖像法——看圖像、得性質(zhì)。定義域圖像在X軸上對(duì)應(yīng)的部分;值域圖像在Y軸上對(duì)應(yīng)的部分;單調(diào)性從左向右看,連續(xù)上升的一段在X軸上對(duì)應(yīng)的區(qū)間是增區(qū)間;從左向右看,連續(xù)下降的一段在X軸上對(duì)應(yīng)的區(qū)間是減區(qū)間。最值圖像點(diǎn)處有值,圖像最低點(diǎn)處有最小值;奇偶性關(guān)于Y軸對(duì)稱是偶函數(shù),關(guān)于原點(diǎn)對(duì)稱是奇函數(shù)
16、函數(shù)、方程、不等式間的重要關(guān)系
方程的根
▼
函數(shù)圖像與x軸交點(diǎn)橫坐標(biāo)
▼
不等式解集端點(diǎn)
17、一元二次不等式的解法。一元二次不等式可以用因式分解轉(zhuǎn)化為二元一次不等式組去解,但比較復(fù)雜;它的簡(jiǎn)便的實(shí)用解法是根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像去解。具體步驟如下:
二次化為正
▼
判別且求根
▼
畫出示意圖
▼
解集橫軸中
18、一元二次方程根的討論。一元二次方程根的符號(hào)問題或m型問題可以利用根的判別式和根與系數(shù)的關(guān)系來(lái)解決,但根的一般問題、特別是區(qū)間根的問題要根據(jù)“三個(gè)二次”間的關(guān)系,利用二次函數(shù)的圖像來(lái)解決!皥D像法”解決一元二次方程根的問題的一般思路是:
題意
▼
二次函數(shù)圖像
▼
不等式組
不等式組包括:a的符號(hào);△的情況;對(duì)稱軸的位置;區(qū)間端點(diǎn)函數(shù)值的符號(hào)。
19、基本函數(shù)在區(qū)間上的值域
我們學(xué)過的一次函數(shù)、反比例函數(shù)、二次函數(shù)等有名稱的函數(shù)是基本函數(shù);竞瘮(shù)求值域或最值有兩種情況:
(1)定義域沒有特別限制時(shí)---記憶法或結(jié)論法;
(2)定義域有特別限制時(shí)---圖像截?cái)喾,一般思路是?/p>
畫出圖像
▼
截出一斷
▼
得出結(jié)論
20、最值型應(yīng)用題的解法
應(yīng)用題中,涉及“一個(gè)變量取什么值時(shí)另一個(gè)變量取得值或最小值”的問題是最值型應(yīng)用題。解決最值型應(yīng)用題的基本思路是函數(shù)思想法,其解題步驟是:
設(shè)變量
▼
列函數(shù)
▼
求最值
▼
寫結(jié)論
21、穿線法
穿線法是解高次不等式和分式不等式的方法。其一般思路是:
首項(xiàng)化正
▼
求根標(biāo)根
▼
右上起穿
▼
奇穿偶回
注意:①高次不等式首先要用移項(xiàng)和因式分解的方法化為“左邊乘積、右邊是零”的形式。②分式不等式一般不能用兩邊都乘去分母的方法來(lái)解,要通過移項(xiàng)、通分合并、因式分解的方法化為“商零式”,用穿線法解。
高考數(shù)學(xué)五大解題思路總結(jié)
高考數(shù)學(xué)解題思想一:函數(shù)與方程思想
函數(shù)思想是指運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,通過建立函數(shù)關(guān)系(或構(gòu)造函數(shù))運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題;方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語(yǔ)言將問題轉(zhuǎn)化為方程(方程組)或不等式模型(方程、不等式等)去解決問題。利用轉(zhuǎn)化思想我們還可進(jìn)行函數(shù)與方程間的相互轉(zhuǎn)化。
高考數(shù)學(xué)解題思想二:數(shù)形結(jié)合思想
中學(xué)數(shù)學(xué)研究的對(duì)象可分為兩大部分,一部分是數(shù),一部分是形,但數(shù)與形是有聯(lián)系的,這個(gè)聯(lián)系稱之為數(shù)形結(jié)合或形數(shù)結(jié)合。它既是尋找問題解決切入點(diǎn)的“法寶”,又是優(yōu)化解題途徑的“良方”,因此我們?cè)诮獯饠?shù)學(xué)題時(shí),能畫圖的盡量畫出圖形,以利于正確地理解題意、快速地解決問題。
高考數(shù)學(xué)解題思想三:特殊與一般的思想
用這種思想解選擇題有時(shí)特別有效,這是因?yàn)橐粋(gè)命題在普遍意義上成立時(shí),在其特殊情況下也必然成立,根據(jù)這一點(diǎn),我們可以直接確定選擇題中的正確選項(xiàng)。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣精彩。
高考數(shù)學(xué)解題思想四:極限思想解題步驟
極限思想解決問題的一般步驟為:(1)對(duì)于所求的未知量,先設(shè)法構(gòu)思一個(gè)與它有關(guān)的變量;(2)確認(rèn)這變量通過無(wú)限過程的結(jié)果就是所求的未知量;(3)構(gòu)造函數(shù)(數(shù)列)并利用極限計(jì)算法則得出結(jié)果或利用圖形的極限位置直接計(jì)算結(jié)果。
高考數(shù)學(xué)解題思想五:分類討論思想
我們常常會(huì)遇到這樣一種情況,解到某一步之后,不能再以統(tǒng)一的方法、統(tǒng)一的式子繼續(xù)進(jìn)行下去,這是因?yàn)楸谎芯康膶?duì)象包含了多種情況,這就需要對(duì)各種情況加以分類,并逐類求解,然后綜合歸納得解,這就是分類討論。引起分類討論的原因很多,數(shù)學(xué)概念本身具有多種情形,數(shù)學(xué)運(yùn)算法則、某些定理、公式的限制,圖形位置的不確定性,變化等均可能引起分類討論。在分類討論解題時(shí),要做到標(biāo)準(zhǔn)統(tǒng)一,不重不漏。
高中數(shù)學(xué)的解題的方法
1、首先是精選題目,做到少而精。只有解決質(zhì)量高的、有代表性的題目才能達(dá)到事半功倍的效果。然而絕大多數(shù)的同學(xué)還沒有辨別、分析題目好壞的能力,這就需要在老師的指導(dǎo)下來(lái)選擇復(fù)習(xí)的練習(xí)題,以了解高考題的形式、難度。
2、其次是分析題目。解答任何一個(gè)數(shù)學(xué)題目之前,都要先進(jìn)行分析。相對(duì)于比較難的題目,分析更顯得尤為重要。我們知道,解決數(shù)學(xué)問題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。當(dāng)然在這個(gè)過程中也反映出對(duì)數(shù)學(xué)基礎(chǔ)知識(shí)掌握的熟練程度、理解程度和數(shù)學(xué)方法的靈活應(yīng)用能力。例如,許多三角方面的題目都是把角、函數(shù)名、結(jié)構(gòu)形式統(tǒng)一后就可以解決問題了,而選擇怎樣的三角公式也是成敗的關(guān)鍵。
3、最后,題目總結(jié)。解題不是目的,我們是通過解題來(lái)檢驗(yàn)我們的學(xué)習(xí)效果,發(fā)現(xiàn)學(xué)習(xí)中的不足的,以便改進(jìn)和提高。因此,解題后的總結(jié)至關(guān)重要,這正是我們學(xué)習(xí)的大好機(jī)會(huì)。對(duì)于一道完成的題目,有以下幾個(gè)方面需要總結(jié):
①在知識(shí)方面,題目中涉及哪些概念、定理、公式等基礎(chǔ)知識(shí),在解題過程中是如何應(yīng)用這些知識(shí)的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應(yīng)用。
、勰懿荒馨呀忸}過程概括、歸納成幾個(gè)步驟(比如用數(shù)學(xué)歸納法證明題目就有很明顯的三個(gè)步驟)。
④能不能歸納出題目的類型,進(jìn)而掌握這類題目的解題通法(我們反對(duì)老師把現(xiàn)成的題目類型給學(xué)生,讓學(xué)生拿著題目套類型,但我們鼓勵(lì)學(xué)生自己總結(jié)、歸納題目類型)。
數(shù)學(xué)解題方法2
1、實(shí)物演示法
利用身邊的實(shí)物來(lái)演示數(shù)學(xué)題目的條件和問題,及條件與條件,條件與問題之間的關(guān)系,在此基礎(chǔ)上進(jìn)行分析思考、尋求解決問題的方法。這種方法可以使數(shù)學(xué)內(nèi)容形象化,數(shù)量關(guān)系具體化。比如:數(shù)學(xué)中的相遇問題。通過實(shí)物演示不僅能夠解決“同時(shí)、相向而行、相遇”等術(shù)語(yǔ),而且為學(xué)生指明了思維方向。再如,在一個(gè)圓形(方形)水塘周圍栽樹問題,如果能進(jìn)行一個(gè)實(shí)際操作,效果要好得多。
二年級(jí)數(shù)學(xué)教材中,“三個(gè)小朋友見面握手,每?jī)扇宋找淮,共要握幾次手”與“用三張不同的數(shù)字卡片擺成兩位數(shù),共可以擺成多少個(gè)兩位數(shù)”。像這樣的有關(guān)排列、組合的知識(shí),在小學(xué)教學(xué)中,如果實(shí)物演示的方法,是很難達(dá)到預(yù)期的教學(xué)目標(biāo)的。
特別是一些數(shù)學(xué)概念,如果沒有實(shí)物演示,小學(xué)生就不能真正掌握。長(zhǎng)方形的面積、長(zhǎng)方體的認(rèn)識(shí)、圓柱的體積等的學(xué)習(xí),都依賴于實(shí)物演示作思維的基礎(chǔ)。
所以,小學(xué)數(shù)學(xué)教師應(yīng)盡可能多地制作一些數(shù)學(xué)教(學(xué))具,而且這些教(學(xué))具用過后要好好保存,可以重復(fù)使用。這樣可以有效地提高課堂教學(xué)效率,提升學(xué)生的學(xué)習(xí)成績(jī)。
2、圖示法
借助直觀圖形來(lái)確定思考方向,尋找思路,求得解決問題的方法。圖示法直觀可靠,便于分析數(shù)形關(guān)系,不受邏輯推導(dǎo)限制,思路靈活開闊,但圖示依賴于人們對(duì)表象加工整理的可靠性上,一旦圖示與實(shí)際情況不相符,易使在此基礎(chǔ)上的聯(lián)想、想象出現(xiàn)謬誤或走入誤區(qū),最后導(dǎo)致錯(cuò)誤的結(jié)果。比如有的數(shù)學(xué)教師愛徒手畫數(shù)學(xué)圖形,難免造成不準(zhǔn)確,使學(xué)生產(chǎn)生誤解。
在課堂教學(xué)當(dāng)中,要多用圖示的方法來(lái)解決問題。有的題目,圖畫出來(lái)了,結(jié)果也就出來(lái)的;有的題,圖畫好了,題意學(xué)生也就明白了;有的題,畫圖則可以幫助分析題意、啟迪思路,作為其他解法的輔助手段。
例1:把一根木頭鋸成3段需要24分鐘,鋸成6段需要多少分鐘?(圖略)
思維方法是:圖示法。
思維方向是:鋸幾次,每次用幾分鐘。
思路是:鋸3段鋸了幾次,每次用幾分鐘,鋸6段鋸了幾次,需要多少分鐘。
例2:判斷等腰三角形中,點(diǎn)D是底邊BC的中點(diǎn),圖甲的面積比圖乙的面積大,圖甲的周長(zhǎng)比圖乙的周長(zhǎng)長(zhǎng)。(圖略)
思維方法:圖示法。
思維方向:先比較面積,再比較周長(zhǎng)。
思路:作條輔助線。圖甲占的面積大,圖乙所占面積小,所以“圖甲的面積比圖乙的面積大”是正確的。線段AD比曲線AD短,所以“圖甲的周長(zhǎng)比圖乙的周長(zhǎng)長(zhǎng)”是錯(cuò)誤的。
3、列表法
運(yùn)用列出表格來(lái)分析思考、尋找思路、求解問題的方法叫做列表法。列表法清晰明了,便于分析比較、提示規(guī)律,也有利于記憶。它的局限性在于求解范圍小,適用題型狹窄,大多跟尋找規(guī)律或顯示規(guī)律有關(guān)。比如,正、反比例的內(nèi)容,整理數(shù)據(jù),乘法口訣,數(shù)位順序等內(nèi)容的教學(xué)大都采用“列表法”。
用列表法解決傳統(tǒng)數(shù)學(xué)問題:雞兔同籠問題。制作三個(gè)表格:第一張表格是逐一舉例法,根據(jù)雞與兔共20只的條件,假設(shè)雞只有1只,那么兔就有19只,腿共有78條……這樣逐一列舉,直至尋找到所求的答案;第二張表格是列舉了幾個(gè)以后發(fā)現(xiàn)了只數(shù)與腿數(shù)的規(guī)律,從而減少了列舉的次數(shù);第三張表格是從中間開始列舉,由于雞與兔共20只,所以各取10只,接著根據(jù)實(shí)際的數(shù)據(jù)情況確定列舉的方向。
4、探索法
按照一定方向,通過嘗試來(lái)摸索規(guī)律、探求解決問題思路的方法叫做探究法。我國(guó)著名數(shù)學(xué)家華羅庚說(shuō)過,在數(shù)學(xué)里,“難處不在于有了公式去證明,而在于沒有公式之前,怎樣去找出公式來(lái)!碧K霍姆林斯基說(shuō)過:在人的心靈深處,都有一種根深蒂固的需要,這就是希望自己是一個(gè)發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中,這種需要特別強(qiáng)烈!皩W(xué)習(xí)要以探究為核心”,是新課程的基本理念之一。人們?cè)陔y以把問題轉(zhuǎn)化為簡(jiǎn)單的、基本的、熟悉的、典型的問題時(shí),常常采取的一種好方法就是探究、嘗試。
第一,探究方向要準(zhǔn)確,興趣要高漲,切忌胡亂嘗試或形式主義的探究。
例如,教學(xué)“比例尺”時(shí),教師創(chuàng)設(shè)“學(xué)生出題考老師”的教學(xué)情境,師:“現(xiàn)在我們考試好不好?”學(xué)生一聽:很奇怪,正當(dāng)學(xué)生疑惑之時(shí),教師說(shuō):“今天改變過去的考試方法,由你們出題考老師,愿意嗎?”學(xué)生聽后很感興趣。教師說(shuō):“這里有一幅地圖,你們用直尺任意量出兩地的距離,我都能很快地告訴你們這兩地之間的實(shí)際距離,相信嗎?”于是學(xué)生紛紛上臺(tái)度量、報(bào)數(shù),教師都一個(gè)接一個(gè)地回答對(duì)應(yīng)的實(shí)際距離。學(xué)生這時(shí)更感到奇怪,異口同聲地說(shuō):“老師您快告訴我們吧,您是怎樣算的?”教師說(shuō):“其實(shí)呀,有一位好朋友在暗中幫助老師,你們知道它是誰(shuí)嗎?想認(rèn)識(shí)它嗎?”于是引出所要學(xué)習(xí)的內(nèi)容“比例尺”。
第二,定向猜測(cè),反復(fù)實(shí)踐,在不斷分析、調(diào)整中尋找規(guī)律。
例3:找規(guī)律填數(shù)。
(1)1、4、 、10、13、 、19;
(2)2、8、18、32、 、72、 。
第三,獨(dú)立探究與合作探究結(jié)合。獨(dú)立,有自由的思維時(shí)空;合作,可以知識(shí)上互補(bǔ),方法上互相借鑒,不時(shí)還能碰撞出智慧的火花。
小學(xué)數(shù)學(xué)教學(xué)活動(dòng)中,教師應(yīng)盡量創(chuàng)設(shè)讓學(xué)生去探究的情景,創(chuàng)造讓學(xué)生去探究的機(jī)會(huì),鼓勵(lì)有探究精神和習(xí)慣的學(xué)生。
5、觀察法
通過大量具體事例,歸納發(fā)現(xiàn)事物的一般規(guī)律的方法叫做觀察法。巴浦洛夫說(shuō):“應(yīng)當(dāng)先學(xué)會(huì)觀察,不學(xué)會(huì)觀察永遠(yuǎn)當(dāng)不了科學(xué)家!
小學(xué)數(shù)學(xué)“觀察”的內(nèi)容一般有:①數(shù)字的變化規(guī)律及位置特點(diǎn);②條件與結(jié)論之間的關(guān)系;③題目的結(jié)構(gòu)特點(diǎn);④圖形的特點(diǎn)及大小、位置關(guān)系。
如:觀察一組算式:25×4=4×25,62×11=11×62,100×6=6×100……歸納出乘法交換率:在乘法算式里,交換兩個(gè)因數(shù)的位置,積不變。
“觀察”的要求:第一,觀察要細(xì)致、準(zhǔn)確。
例4:找出下列各題錯(cuò)在哪里,并改正。
(1)25×16=25×(4×4)=(25×4)×(25×4);
(2)18×36+18×64=(18+18)×(36+64)
例5:直接寫出下列各題的得數(shù):
(1)3.6+6.4=
(2)3.6+6.04=
(3)125×57×0.04(4)(351-37-13)÷5=
第二,科學(xué)觀察。
科學(xué)觀察滲透了更多的理性因素,它是有目的,有計(jì)劃地察看研究對(duì)象。比如,在教學(xué)長(zhǎng)方體的認(rèn)識(shí)時(shí),要做到“有序”觀察:
(1)面--形狀、個(gè)數(shù)、面與面之間的關(guān)系;
(2)棱--棱的形成、條數(shù)、棱與棱之間的關(guān)系(相對(duì)的棱相等;相對(duì)的棱有四條;長(zhǎng)方體的棱可以分為三組);
(3)頂點(diǎn)--頂點(diǎn)的形成、個(gè)數(shù),認(rèn)識(shí)頂點(diǎn)的一個(gè)重要作用是引出長(zhǎng)方體長(zhǎng)、寬、高的概念。
第三,觀察必定與思考結(jié)合。
這是一年級(jí)下學(xué)期的一道思考題,如果只觀察不思考,這道題目讓干什么就不知道。
6、典型法
針對(duì)題目去聯(lián)想已經(jīng)解過的典型問題的解題規(guī)律,從而找出解題思路的方法叫做典型法。典型是相對(duì)于普遍而言的`。解決數(shù)學(xué)問題,有些需要用一般方法,有些則需要用特殊(典型)方法。比如,歸一、倍比和歸總算法、行程、工程、消同求異、平均數(shù)等。
運(yùn)用典型法必須注意:
(1)要掌握典型材料的關(guān)鍵及規(guī)律。
例6:已知爸爸比兒子大30歲,爸爸今年的年齡正好是兒子的7倍。爸爸、兒子今年分別是多少歲?關(guān)鍵點(diǎn)在:爸爸比兒子大30歲,爸爸的年齡比兒子多幾倍。典型題都有典型解法,要想真正學(xué)好數(shù)學(xué),即要理解和掌握一般思路和解法,還要學(xué)會(huì)典型解法。
(2)熟悉典型材料,并能敏捷地聯(lián)想到所適用的典型,從而確定所需要的解題方法。
例7:見到“某城市有一條公共汽車線路,長(zhǎng)16500米,平均每隔500米設(shè)一個(gè)車站。這條線路需要設(shè)多少個(gè)車站?”這樣題目,就應(yīng)該聯(lián)想到上面所講到的“鋸木頭用多少分鐘”的典型問題。
(3)典型和技巧相聯(lián)系。
例8:甲乙兩個(gè)工程隊(duì)共有82人,如果從乙隊(duì)調(diào)8人到甲隊(duì),兩隊(duì)人數(shù)正好相等。甲乙兩隊(duì)原來(lái)各有多少人?這題目的技巧:調(diào)前、調(diào)后兩隊(duì)總?cè)藬?shù)沒變。先算調(diào)后各隊(duì)人數(shù),再算原來(lái)各隊(duì)人數(shù)。
7、放縮法
通過對(duì)被研究對(duì)象的放縮估計(jì)來(lái)解決問題的。方法叫做放縮法。放縮法靈活、巧妙,但有賴于知識(shí)的拓展能力及其想象能力。
例9:求12和9的最小公倍數(shù)。求兩個(gè)數(shù)的最小公倍數(shù)一般的方法是“短除式”方法,它是根據(jù)這兩個(gè)數(shù)的質(zhì)因數(shù)情況來(lái)求出它們的最小公倍數(shù)的。但也有兩個(gè)典型方法:一是“如果兩個(gè)數(shù)是互質(zhì)數(shù),那么這兩個(gè)數(shù)的最小公倍數(shù)就是它們的乘積”;二是“如果大數(shù)是小數(shù)的倍數(shù),那么這兩個(gè)數(shù)的最小公倍數(shù)就是大數(shù)”,F(xiàn)在我們根據(jù)典型方法二,進(jìn)行擴(kuò)展運(yùn)用,放大“大數(shù)”來(lái)求12和9的最小公倍數(shù)。
12不是9的倍數(shù),就把它放大2倍,得24,仍然不是9的倍數(shù),放大3倍,得36,36是9的倍數(shù),那么,12和9的最小公倍數(shù)就是36。這種方法的關(guān)鍵點(diǎn)在于,如果大數(shù)不是小數(shù)的倍數(shù),就把大數(shù)翻倍,但一定從2倍開始,如果一下子擴(kuò)大6倍,得數(shù)是它們的公倍數(shù),而不是最小的了。
例10:期末考試,小剛的語(yǔ)文成績(jī)和英語(yǔ)成績(jī)的和是197分;語(yǔ)文和數(shù)學(xué)成績(jī)加起來(lái)是199分;數(shù)學(xué)和英語(yǔ)成績(jī)加起來(lái)是196分。想一想,小剛的哪科成績(jī)最高?你能算出小剛的各科成績(jī)嗎?
思路一:“放大”。通過觀察發(fā)現(xiàn),語(yǔ)、數(shù)、外三科成績(jī)?cè)陬}目中各出現(xiàn)兩次,我們求197+199+196的和,這個(gè)和是“語(yǔ)數(shù)外成績(jī)的2倍”,除以2得三科成績(jī)之和,再減去任意兩科的成績(jī),就得到第三科的成績(jī)。
思路二:“縮小”。我們用語(yǔ)數(shù)成績(jī)的和減去語(yǔ)外的成績(jī),199-197=2(分),這是數(shù)學(xué)減英語(yǔ)成績(jī)的差。數(shù)學(xué)和英語(yǔ)的和是196分,再求數(shù)學(xué)的分?jǐn)?shù)就不難了。放縮法有時(shí)運(yùn)用在估算和驗(yàn)算上。
例11:檢驗(yàn)下列計(jì)算結(jié)果是否正確?
(1)18.7×6.9=137.3 (2)17485÷6.6=3609
對(duì)于(1)用總體估計(jì),放大至19×7=133,估計(jì)得數(shù)要小于133,所以本題結(jié)果錯(cuò)誤。對(duì)于(2)用最高位估計(jì),把17看作18,把6.6看作6,18÷6=3,顯然答數(shù)的最高位不會(huì)是3,故本題結(jié)果也不正確。
例12:把雞和兔放在一起,共有48個(gè)頭,114只足,問雞、兔各有幾只。
這是一道雞兔同籠的典型問題,我們也用放縮法,不妨把雞和兔的足數(shù)縮小2倍,那么,雞的足數(shù)和它的頭數(shù)一樣,而兔的足數(shù)是它的只數(shù)的2倍。所以,總的足數(shù)縮小2倍后,雞和兔的總足數(shù)與它們的總只數(shù)相差數(shù)就是兔的只數(shù)。
8、驗(yàn)證法
你的結(jié)果正確嗎?不能只等教師的評(píng)判,重要的是自己心里要清楚,對(duì)自己的學(xué)習(xí)有一個(gè)清楚的評(píng)價(jià),這是優(yōu)秀學(xué)生必備的學(xué)習(xí)品質(zhì)。
驗(yàn)證法應(yīng)用范圍比較廣泛,是需要熟練掌握的一項(xiàng)基本功。應(yīng)當(dāng)通過實(shí)踐訓(xùn)練及其長(zhǎng)期體驗(yàn)積累,不斷提高自己的驗(yàn)證能力和逐步養(yǎng)成嚴(yán)謹(jǐn)細(xì)致的好習(xí)慣。
(1)用不同的方法驗(yàn)證。教科書上一再提出:減法用加法檢驗(yàn),加法用減法檢驗(yàn),除法用乘法驗(yàn)算,乘法用除法驗(yàn)算。
(2)代入檢驗(yàn)。解方程的結(jié)果正確嗎?用代入法,看等號(hào)兩邊是否相等。還可以把結(jié)果當(dāng)條件進(jìn)行逆向推算。
(3)是否符合實(shí)際。“千教萬(wàn)教教人求真,千學(xué)萬(wàn)學(xué)學(xué)做真人”陶行知先生的話要落實(shí)在教學(xué)中。比如,做一套衣服需要4米布,現(xiàn)有布31米,可以做多少套衣服?有學(xué)生這樣做:31÷4≈8(套)
按照“四舍五入法”保留近似數(shù)無(wú)疑是正確的,但和實(shí)際不符合,做衣服的剩余布料只能舍去。教學(xué)中,常識(shí)性的東西予以重視。做衣服套數(shù)的近似計(jì)算要用“去尾法”。
(4)驗(yàn)證的動(dòng)力在猜想和質(zhì)疑。牛頓曾說(shuō)過:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)!薄安隆币彩墙鉀Q問題的一種重要策略?梢蚤_拓學(xué)生的思維、激發(fā)“我要學(xué)”的愿望。為了避免瞎猜,一定學(xué)會(huì)驗(yàn)證。驗(yàn)證猜測(cè)結(jié)果是否正確,是否符合要求。如不符合要求,及時(shí)調(diào)整猜想,直到解決問題。
數(shù)學(xué)解題方法3
高中數(shù)學(xué)選擇題的解題方法
方法一:直接法
所謂直接法,就是直接從題設(shè)的條件出發(fā),運(yùn)用有關(guān)的概念、定義、性質(zhì)、定理、法則和公式等知識(shí),通過嚴(yán)密的推理與計(jì)算來(lái)得出題目的結(jié)論,然后再對(duì)照題目所給的四個(gè)選項(xiàng)來(lái)“對(duì)號(hào)入座”.其基本策略是由因?qū)Ч苯忧蠼?
方法二:特例法
特例法的理論依據(jù)是:命題的一般性結(jié)論為真的先決條件是它的特殊情況為真,即普通性寓于特殊性之中,所謂特例法,就是用特殊值(特殊圖形、特殊位置)代替題設(shè)普遍條件,得出特殊結(jié)論,對(duì)各個(gè)選項(xiàng)進(jìn)行檢驗(yàn),從而作出正確的判斷.常用的特例有取特殊數(shù)值、特殊數(shù)列、特殊函數(shù)、特殊圖形、特殊角、特殊位置等.這種方法實(shí)際是一種“小題小做”的解題策略,對(duì)解答某些選擇題有時(shí)往往十分奏效.
注意:
在題設(shè)條件都成立的情況下,用特殊值(取得越簡(jiǎn)單越好)進(jìn)行探求,從而清晰、快捷地得到正確的答案,即通過對(duì)特殊情況的研究來(lái)判斷一般規(guī)律,是解答本類選擇題的較佳策略.近幾年高考選擇題中可用或結(jié)合特例法來(lái)解答的約占30%.因此,特例法是求解選擇題的好招.
方法三:排除法
數(shù)學(xué)選擇題的解題本質(zhì)就是去偽存真,舍棄不符合題目要求的選項(xiàng),找到符合題意的正確結(jié)論.篩選法(又叫排除法)就是通過觀察分析或推理運(yùn)算各項(xiàng)提供的信息或通過特例,對(duì)于錯(cuò)誤的選項(xiàng),逐一剔除,從而獲得正確的結(jié)論.
注意:
排除法適應(yīng)于定性型或不易直接求解的選擇題.當(dāng)題目中的條件多于一個(gè)時(shí),先根據(jù)某些條件在選項(xiàng)中找出明顯與之矛盾的,予以否定,再根據(jù)另一些條件在縮小選項(xiàng)的范圍內(nèi)找出矛盾,這樣逐步篩選,直到得出正確的答案.它與特例法、圖解法等結(jié)合使用是解選擇題的常用方法,近幾年高考選擇題中占有很大的比重.
方法四:數(shù)形結(jié)合法
數(shù)形結(jié)合,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形結(jié)合起來(lái),使抽象思維與形象思維結(jié)合起來(lái),通過對(duì)圖形的處理,發(fā)揮直觀對(duì)抽象的支持作用,實(shí)現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀.
方法五:估算法
在選擇題中作準(zhǔn)確計(jì)算不易時(shí),可根據(jù)題干提供的信息,估算出結(jié)果的大致取值范圍,排除錯(cuò)誤的選項(xiàng).對(duì)于客觀性試題,合理的估算往往比盲目的準(zhǔn)確計(jì)算和嚴(yán)謹(jǐn)推理更為有效,可謂“一葉知秋”.
方法六:綜合法
當(dāng)單一的解題方法不能使試題迅速獲解時(shí),我們可以將多種方法融為一體,交叉使用,試題便能迎刃而解.根據(jù)題干提供的信息,不易找到解題思路時(shí),我們可以從選項(xiàng)里找解題靈感.
高中數(shù)學(xué)的證明題的推理方法
一、合情推理
1.歸納推理是由部分到整體,由個(gè)別到一般的推理,在進(jìn)行歸納時(shí),要先根據(jù)已知的部分個(gè)體,把它們適當(dāng)變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對(duì)象之間的推理,其中一個(gè)對(duì)象具有某個(gè)性質(zhì),則另一個(gè)對(duì)象也具有類似的性質(zhì)。在進(jìn)行類比時(shí),要充分考慮已知對(duì)象性質(zhì)的推理過程,然后類比推導(dǎo)類比對(duì)象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學(xué)的證明過程主要是通過演繹推理進(jìn)行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的,其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對(duì)于間接證明說(shuō)的,綜合法和分析法是兩種常見的直接證明。綜合法一般地,利用已知條件和某些數(shù)學(xué)定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導(dǎo)出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個(gè)明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對(duì)于直接證明說(shuō)的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說(shuō)明假設(shè)錯(cuò)誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學(xué)歸納法
數(shù)學(xué)上證明與自然數(shù)N有關(guān)的命題的一種特殊方法,它主要用來(lái)研究與正整數(shù)有關(guān)的數(shù)學(xué)問題,在高中數(shù)學(xué)中常用來(lái)證明等式成立和數(shù)列通項(xiàng)公式成立。
數(shù)學(xué)答題技巧及方法
做題時(shí),有一些“條件反射”你應(yīng)該記住,這能幫你大大的節(jié)省時(shí)間!具體的看看下面吧!對(duì)你一定有幫助哦!
1、函數(shù)或方程或不等式的題目,先直接思考后建立三者的聯(lián)系。首先考慮定義域,其次使用“三合一定理”。
2、如果在方程或是不等式中出現(xiàn)超越式,優(yōu)先選擇數(shù)形結(jié)合的思想方法;
3、面對(duì)含有參數(shù)的初等函數(shù)來(lái)說(shuō),在研究的時(shí)候應(yīng)該抓住參數(shù)沒有影響到的不變的性質(zhì)。如所過的定點(diǎn),二次函數(shù)的對(duì)稱軸或是……;
4、選擇與填空中出現(xiàn)不等式的題目,優(yōu)選特殊值法;
5、求參數(shù)的取值范圍,應(yīng)該建立關(guān)于參數(shù)的等式或是不等式,用函數(shù)的'定義域或是值域或是解不等式完成,在對(duì)式子變形的過程中,優(yōu)先選擇分離參數(shù)的方法;
6、恒成立問題或是它的反面,可以轉(zhuǎn)化為最值問題,注意二次函數(shù)的應(yīng)用,靈活使用閉區(qū)間上的最值,分類討論的思想,分類討論應(yīng)該不重復(fù)不遺漏;
7、圓錐曲線的題目?jī)?yōu)先選擇它們的定義完成,直線與圓錐曲線相交問題,若與弦的中點(diǎn)有關(guān),選擇設(shè)而不求點(diǎn)差法,與弦的中點(diǎn)無(wú)關(guān),選擇韋達(dá)定理公式法;使用韋達(dá)定理必須先考慮是否為二次及根的判別式;
8、求曲線方程的題目,如果知道曲線的形狀,則可選擇待定系數(shù)法,如果不知道曲線的形狀,則所用的步驟為建系、設(shè)點(diǎn)、列式、化簡(jiǎn)(注意去掉不符合條件的特殊點(diǎn));
9、求橢圓或是雙曲線的離心率,建立關(guān)于a、b、c之間的關(guān)系等式即可;
10、三角函數(shù)求周期、單調(diào)區(qū)間或是最值,優(yōu)先考慮化為一次同角弦函數(shù),然后使用輔助角公式解答;解三角形的題目,重視內(nèi)角和定理的使用;與向量聯(lián)系的題目,注意向量角的范圍;
11、數(shù)列的題目與和有關(guān),優(yōu)選和通公式,優(yōu)選作差的方法;注意歸納、猜想之后證明;猜想的方向是兩種特殊數(shù)列;解答的時(shí)候注意使用通項(xiàng)公式及前n項(xiàng)和公式,體會(huì)方程的思想;
12、立體幾何第一問如果是為建系服務(wù)的,一定用傳統(tǒng)做法完成,如果不是,可以從第一問開始就建系完成;注意向量角與線線角、線面角、面面角都不相同,熟練掌握它們之間的三角函數(shù)值的轉(zhuǎn)化;錐體體積的計(jì)算注意系數(shù)1/3,而三角形面積的計(jì)算注意系數(shù)1/2;與球有關(guān)的題目也不得不防,注意連接“心心距”創(chuàng)造直角三角形解題;
13、導(dǎo)數(shù)的題目常規(guī)的一般不難,但要注意解題的層次與步驟,如果要用構(gòu)造函數(shù)證明不等式,可從已知或是前問中找到突破口,必要時(shí)應(yīng)該放棄;重視幾何意義的應(yīng)用,注意點(diǎn)是否在曲線上;
14、概率的題目如果出解答題,應(yīng)該先設(shè)事件,然后寫出使用公式的理由,當(dāng)然要注意步驟的多少?zèng)Q定解答的詳略;如果有分布列,則概率和為1是檢驗(yàn)正確與否的重要途徑;
15、遇到復(fù)雜的式子可以用換元法,使用換元法必須注意新元的取值范圍,有勾股定理型的已知,可使用三角換元來(lái)完成;
16、注意概率分布中的二項(xiàng)分布,二項(xiàng)式定理中的通項(xiàng)公式的使用與賦值的方法,排列組合中的枚舉法,全稱與特稱命題的否定寫法,取值范或是不等式的解的端點(diǎn)能否取到需單獨(dú)驗(yàn)證,用點(diǎn)斜式或斜截式方程的時(shí)候考慮斜率是否存在等;
17、絕對(duì)值問題優(yōu)先選擇去絕對(duì)值,去絕對(duì)值優(yōu)先選擇使用定義;
18、與平移有關(guān)的,注意口訣“左加右減,上加下減”只用于函數(shù),沿向量平移一定要使用平移公式完成;
19、關(guān)于中心對(duì)稱問題,只需使用中點(diǎn)坐標(biāo)公式就可以,關(guān)于軸對(duì)稱問題,注意兩個(gè)等式的運(yùn)用:一是垂直,一是中點(diǎn)在對(duì)稱軸上。
數(shù)學(xué)解題方法4
解題的學(xué)習(xí)過程通常的程序是:閱讀數(shù)學(xué)知識(shí),理解概念;在對(duì)例題和老師的講解進(jìn)行反思,思考例題的方法、技巧和解題的規(guī)范過程;然后做數(shù)學(xué)練習(xí)題。
基本題要練程序和速度;典型題嘗試一題多解開發(fā)數(shù)學(xué)思維;最后要及時(shí)總結(jié)反思改錯(cuò),交流學(xué)習(xí)好的解法和技巧。
著名的數(shù)學(xué)教育家波利亞說(shuō)“如果沒有反思,就錯(cuò)過了解題的的一次重要而有意義的方面!
教師在教學(xué)設(shè)計(jì)中要讓解學(xué)生好數(shù)學(xué)問題,就要對(duì)數(shù)學(xué)思想方法有清楚的認(rèn)識(shí),才能更好的挖掘題目的功能,引導(dǎo)學(xué)生發(fā)現(xiàn)總結(jié)題目的解法和技巧,提高解題能力。
1. 函數(shù)與方程的思想
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)最基本的思想。所謂函數(shù)的思想是指用運(yùn)動(dòng)變化的觀點(diǎn)去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運(yùn)用函數(shù)的'圖像與性質(zhì)去分析、解決相關(guān)的問題。
而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2. 數(shù)形結(jié)合的思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。
因此數(shù)形結(jié)合的思想對(duì)問題的解決有舉足輕重的作用。
3. 分類討論的思想
分類討論的思想之所以重要,原因一是因?yàn)樗倪壿嬓暂^強(qiáng),原因二是因?yàn)樗闹R(shí)點(diǎn)的涵蓋比較廣,原因三是因?yàn)樗膳囵B(yǎng)學(xué)生的分析和解決問題的能力。
原因四是實(shí)際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。
數(shù)學(xué)解題方法5
提高解數(shù)學(xué)綜合性問題的能力是提高高考數(shù)學(xué)成績(jī)的根本保證。解好綜合題對(duì)于那些想考一流大學(xué),并對(duì)數(shù)學(xué)成績(jī)期望值較高的同學(xué)來(lái)說(shuō),是一道生命線,往往成也蕭何敗也蕭何;對(duì)于那些定位在二流大學(xué)的學(xué)生而言,這里可是放手一搏的好地方。
1.綜合題在高考試卷中的位置與作用:
數(shù)學(xué)綜合性試題常常是高考試卷中把關(guān)題和壓軸題。在高考中舉足輕重,高考的區(qū)分層次和選拔使命主要靠這類題型來(lái)完成預(yù)設(shè)目標(biāo)。目前的高考綜合題已經(jīng)由單純的知識(shí)疊加型轉(zhuǎn)化為知識(shí)、方法和能力綜合型尤其是創(chuàng)新能力型試題。綜合題是高考數(shù)學(xué)試題的精華部分,具有知識(shí)容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運(yùn)用以及要求考生具有一定的創(chuàng)新意識(shí)和創(chuàng)新能力等特點(diǎn)。
2.解綜合性問題的三字訣:
三性:綜合題從題設(shè)到結(jié)論,從題型到內(nèi)容,條件隱蔽,變化多樣,因此就決定了審題思考的復(fù)雜性和解題設(shè)計(jì)的多樣性。在審題思考中,要把握好三性,即:
(1)目的性:明確解題結(jié)果的終極目標(biāo)和每一步驟分項(xiàng)目標(biāo)。
(2)準(zhǔn)確性:提高概念把握的準(zhǔn)確性和運(yùn)算的準(zhǔn)確性。
。3)隱含性:注意題設(shè)條件的隱含性。審題這第一步,不要怕慢,其實(shí)慢中有快,解題方向明確,解題手段合理,這是提高解題速度和準(zhǔn)確性的前提和保證。
三化:
。1)問題具體化(包括抽象函數(shù)用具有相同性質(zhì)的具體函數(shù)作為代表來(lái)研究,字母用常數(shù)來(lái)代表)。即把題目中所涉及的各種概念或概念之間的關(guān)系具體明確,有時(shí)可畫表格或圖形,以便于把一般原理、一般規(guī)律應(yīng)用到具體的解題過程中去。
。2)問題簡(jiǎn)單化。即把綜合問題分解為與各相關(guān)知識(shí)相聯(lián)系的簡(jiǎn)單問題,把復(fù)雜的形式轉(zhuǎn)化為簡(jiǎn)單的形式。
。3)問題和諧化。即強(qiáng)調(diào)變換問題的條件或結(jié)論,使其表現(xiàn)形式符合數(shù)或形內(nèi)部固有的和諧統(tǒng)一的特點(diǎn),或者突出所涉及的各種數(shù)學(xué)對(duì)象之間的知識(shí)聯(lián)系。
三轉(zhuǎn):
(1)語(yǔ)言轉(zhuǎn)換能力。每個(gè)數(shù)學(xué)綜合題都是由一些特定的文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言所組成。解綜合題往往需要較強(qiáng)的語(yǔ)言轉(zhuǎn)換能力。還需要有把普通語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)語(yǔ)言的能力。
。2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的轉(zhuǎn)換能力。
。3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對(duì)題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的.結(jié)合上找出解題思路。運(yùn)用數(shù)形轉(zhuǎn)換策略要注意特殊性,否則解題會(huì)出現(xiàn)漏洞。
三思:
(1)思路:由于綜合題具有知識(shí)容量大,解題方法多,因此,審題時(shí)應(yīng)考慮多種解題思路。
。2)思想:高考綜合題的設(shè)置往往會(huì)突顯考查數(shù)學(xué)思想方法,解題時(shí)應(yīng)注意數(shù)學(xué)思想方法的運(yùn)用。
。3)思辯:即在解綜合題時(shí)注意思路的選擇和運(yùn)算方法的選擇。
三聯(lián):
。1)聯(lián)系相關(guān)知識(shí),(2)連接相似問題,(2)聯(lián)想類似方法。
3.對(duì)平時(shí)綜合練習(xí)的反思:
平時(shí)做完綜合練習(xí)后,要注重反思這一環(huán)節(jié),注意方法的優(yōu)化。要把解題的過程抽象形成思維模塊,注意方法的遷移和問題的拓展。再最后的自由復(fù)習(xí)階段也可選取部分做過的綜合卷中的壓軸題進(jìn)行反思,主要研究:審題分析的過程(如:尋求條件與結(jié)論聯(lián)系,與基礎(chǔ)知識(shí)的聯(lián)系,與平時(shí)基本方法的聯(lián)系)、隱含條件的運(yùn)用、計(jì)算方法及準(zhǔn)確性。
數(shù)學(xué)解題方法6
一.基礎(chǔ)篇之突破公式概念及圖形
高中數(shù)學(xué)考試中涉及的公式概念圖形不完全是課本中涉及的,有相當(dāng)一部分內(nèi)容需要通過做題不斷的補(bǔ)充總結(jié),那么概念公式怎么學(xué)習(xí)呢?
1.概念的.學(xué)習(xí):注重概念的內(nèi)含和外延的把握(如奇偶函數(shù)等),對(duì)于抽象的概念盡可能用自己的語(yǔ)言理解(如極值等),同時(shí)注意概念的相似,關(guān)聯(lián),正反對(duì)比。
2.公式的歸納學(xué)習(xí):熟記課本公式,并在運(yùn)用中簡(jiǎn)化公式以及歸納推導(dǎo)新公式
3.圖形的學(xué)習(xí);掌握基本圖形以及基本圖形的擴(kuò)展圖形。
二.基礎(chǔ)篇之突破運(yùn)算
運(yùn)算的重要性不用我多說(shuō),運(yùn)算怎么提高呢?
1.歸納圖形運(yùn)算。
2.歸納各類方程和不定方法計(jì)算如指對(duì)數(shù)方程,三角方程,根式方程等。
3.掌握特殊式子變形處理以及一般的式子處理思路如分式,根式等處理策略。
4.在平時(shí)計(jì)算時(shí)歸納容易忽視的細(xì)節(jié)運(yùn)算以及一些快速特殊計(jì)算方法。
三.解題篇之選擇題
選擇題從四個(gè)方面進(jìn)行歸納學(xué)習(xí):
1.快速計(jì)算策略
2選項(xiàng)特征.
3題目信息暗示及一般處理方法如涉及抽象問題我們?cè)撛鯓犹幚砟,遇到圖形又怎樣處理呢等
4.選擇題中的一些特殊結(jié)論公式等的歸納
數(shù)學(xué)解題方法7
1、待定系數(shù)法
在解數(shù)學(xué)問題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
2、構(gòu)造法
在解題時(shí),我們常常會(huì)采用這樣的方法,通過對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問題的解決。
3、反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:
(1)反設(shè);
(2)歸謬;
(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的.符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
5、配方法
所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
6、因式分解法
因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。
7、換元法
換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問題易于解決。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積關(guān)系來(lái)證明或計(jì)算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過運(yùn)算達(dá)到求證的結(jié)果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:
(1)平移;
(2)旋轉(zhuǎn);
(3)對(duì)稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實(shí)例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運(yùn)用概念、公式、定理等進(jìn)行推理或運(yùn)算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗(yàn)證法:由題設(shè)找出合適的驗(yàn)證條件,再通過驗(yàn)證,找出正確答案,亦可將供選擇的答案代入條件中去驗(yàn)證,找出正確答案,此法稱為驗(yàn)證法(也稱代入法)。當(dāng)遇到定量命題時(shí),常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對(duì)于正確答案有且只有一個(gè)的選擇題,根據(jù)數(shù)學(xué)知識(shí)或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖像的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對(duì)選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,稱為分析法。
數(shù)學(xué)解題方法8
1、對(duì)照法
如何正確地理解和運(yùn)用數(shù)學(xué)概念?小學(xué)數(shù)學(xué)常用的方法就是對(duì)照法。根據(jù)數(shù)學(xué)題意,對(duì)照概念、性質(zhì)、定律、法則、公式、名詞、術(shù)語(yǔ)的含義和實(shí)質(zhì),依靠對(duì)數(shù)學(xué)知識(shí)的理解、記憶、辨識(shí)、再現(xiàn)、遷移來(lái)解題的方法叫做對(duì)照法。
這個(gè)方法的思維意義就在于,訓(xùn)練學(xué)生對(duì)數(shù)學(xué)知識(shí)的正確理解、牢固記憶、準(zhǔn)確辨識(shí)。
例1:三個(gè)連續(xù)自然數(shù)的和是18,則這三個(gè)自然數(shù)從小到大分別是多少?
對(duì)照自然數(shù)的概念和連續(xù)自然數(shù)的性質(zhì)可以知道:三個(gè)連續(xù)自然數(shù)和的平均數(shù)就是這三個(gè)連續(xù)自然數(shù)的中間那個(gè)數(shù)。
例2:判斷題:能被2除盡的數(shù)一定是偶數(shù)。
這里要對(duì)照“除盡”和“偶數(shù)”這兩個(gè)數(shù)學(xué)概念。只有這兩個(gè)概念全理解了,才能做出正確判斷。
2、公式法
運(yùn)用定律、公式、規(guī)則、法則來(lái)解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡(jiǎn)便、有效,也是小學(xué)生學(xué)習(xí)數(shù)學(xué)必須學(xué)會(huì)和掌握的一種方法。但一定要讓學(xué)生對(duì)公式、定律、規(guī)則、法則有一個(gè)正確而深刻的理解,并能準(zhǔn)確運(yùn)用。
例3:計(jì)算59×37+12×59+59
59×37+12×59+59
=59×(37+12+1)…………運(yùn)用乘法分配律
=59×50…………運(yùn)用加法計(jì)算法則
=(60-1)×50…………運(yùn)用數(shù)的組成規(guī)則
=60×50-1×50…………運(yùn)用乘法分配律
=3000-50…………運(yùn)用乘法計(jì)算法則
=2950…………運(yùn)用減法計(jì)算法則
3、比較法
通過對(duì)比數(shù)學(xué)條件及問題的異同點(diǎn),研究產(chǎn)生異同點(diǎn)的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點(diǎn)必找相異點(diǎn),找相異點(diǎn)必找相同點(diǎn),不可或缺,也就是說(shuō),比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實(shí)質(zhì)。
(3)必須在同一種關(guān)系下(同一種標(biāo)準(zhǔn))進(jìn)行比較,這是“比較”的基本條件。
(4)要抓住主要內(nèi)容進(jìn)行比較,盡量少用“窮舉法”進(jìn)行比較,那樣會(huì)使重點(diǎn)不突出。
(5)因?yàn)閿?shù)學(xué)的嚴(yán)密性,決定了比較必須要精細(xì),往往一個(gè)字,一個(gè)符號(hào)就決定了比較結(jié)論的對(duì)或錯(cuò)。
例4:填空:0.75的位是(),這個(gè)數(shù)小數(shù)部分的位是();十分位的數(shù)4與十位上的數(shù)4相比,它們的()相同,()不同,前者比后者小了()。
這道題的意圖就是要對(duì)“一個(gè)數(shù)的位和小數(shù)部分的位的區(qū)別”,還有“數(shù)位和數(shù)值”的區(qū)別等。
例5:六年級(jí)同學(xué)種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級(jí)有多少學(xué)生?
這是兩種方案的比較。相同點(diǎn)是:六年級(jí)人數(shù)不變;相異點(diǎn)是:兩種方案中的條件不一樣。
找聯(lián)系:每人種樹棵數(shù)變化了,種樹的總棵數(shù)也發(fā)生了變化。
找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數(shù)為90÷2=45(人)。
4、分類法
根據(jù)事物的共同點(diǎn)和差異點(diǎn)將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎(chǔ)的。依據(jù)事物之間的共同點(diǎn)將它們合為較大的類,又依據(jù)差異點(diǎn)將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復(fù)、不遺漏、不交叉。
例6:自然數(shù)按約數(shù)的個(gè)數(shù)來(lái)分,可分成幾類?
答:可分為三類。(1)只有一個(gè)約數(shù)的數(shù),它是一個(gè)單位數(shù),只有一個(gè)數(shù)1;(2)有兩個(gè)約數(shù)的,也叫質(zhì)數(shù),有無(wú)數(shù)個(gè);(3)有三個(gè)約數(shù)的,也叫合數(shù),也有無(wú)數(shù)個(gè)。
5、分析法
把整體分解為部分,把復(fù)雜的事物分解為各個(gè)部分或要素,并對(duì)這些部分或要素進(jìn)行研究、推導(dǎo)的一種思維方法叫做分析法。
依據(jù):總體都是由部分構(gòu)成的。
思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來(lái),再分別對(duì)照要求,從而理順解決問題的思路。
也就是從求解的問題出發(fā),正確選擇所需要的兩個(gè)條件,依次推導(dǎo),一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進(jìn)行圖解思路。
例7:玩具廠計(jì)劃每天生產(chǎn)200件玩具,已經(jīng)生產(chǎn)了6天,共生產(chǎn)1260件。問平均每天超過計(jì)劃多少件?
思路:要求平均每天超過計(jì)劃多少件,必須知道:計(jì)劃每天生產(chǎn)多少件和實(shí)際每天生產(chǎn)多少件。計(jì)劃每天生產(chǎn)多少件已知,實(shí)際每天生產(chǎn)多少件,題中沒有告訴,還得求出來(lái)。要求實(shí)際每天生產(chǎn)多少件玩具,必須知道:實(shí)際生產(chǎn)多少天,和實(shí)際生產(chǎn)多少件,這兩個(gè)條件題中都已知。
6、綜合法
把對(duì)象的各個(gè)部分或各個(gè)方面或各個(gè)要素聯(lián)結(jié)起來(lái),并組合成一個(gè)有機(jī)的整體來(lái)研究、推導(dǎo)和一種思維方法叫做綜合法。
用綜合法解數(shù)學(xué)題時(shí),通常把各個(gè)題知看作是部分(或要素),經(jīng)過對(duì)各部分(或要素)相互之間內(nèi)在聯(lián)系一層層分析,逐步推導(dǎo)到題目要求,所以,綜合法的解題模式是執(zhí)因?qū)Ч步许樛品。這種方法適用于已知條件較少,數(shù)量關(guān)系比較簡(jiǎn)單的數(shù)學(xué)題。
例8:兩個(gè)質(zhì)數(shù),它們的差是小于30的合數(shù),它們的和即是11的'倍數(shù)又是小于50的偶數(shù)。寫出適合上面條件的各組數(shù)。
思路:11的倍數(shù)同時(shí)小于50的偶數(shù)有22和44。
兩個(gè)數(shù)都是質(zhì)數(shù),而和是偶數(shù),顯然這兩個(gè)質(zhì)數(shù)中沒有2。
和是22的兩個(gè)質(zhì)數(shù)有:3和19,5和17。它們的差都是小于30的合數(shù)嗎?
和是44的兩個(gè)質(zhì)數(shù)有:3和41,7和37,13和31。它們的差是小于30的合數(shù)嗎?
這就是綜合法的思路。
7、方程法
用字母表示未知數(shù),并根據(jù)等量關(guān)系列出含有字母的表達(dá)式(等式)。列方程是一個(gè)抽象概括的過程,解方程是一個(gè)演繹推導(dǎo)的過程。方程法的特點(diǎn)是把未知數(shù)等同于已知數(shù)看待,參與列式、運(yùn)算,克服了算術(shù)法必須避開求知數(shù)來(lái)列式的不足。有利于由已知向未知的轉(zhuǎn)化,從而提高了解題的效率和正確率。
例9:一個(gè)數(shù)擴(kuò)大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個(gè)數(shù)。
例10:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩余6千克。這桶油重多少千克?
這兩題用方程解就比較容易。
8、參數(shù)法
用只參與列式、運(yùn)算而不需要解出的字母或數(shù)表示有關(guān)數(shù)量,并根據(jù)題意列出算式的一種方法叫做參數(shù)法。參數(shù)又叫輔助未知數(shù),也稱中間變量。參數(shù)法是方程法延伸、拓展的產(chǎn)物。
例11:汽車爬山,上山時(shí)平均每小時(shí)行15千米,下山時(shí)平均每小時(shí)行駛10千米,問汽車的平均速度是每小時(shí)多少千米?
上下山的平均速度不能用上下山的速度和除以2。而應(yīng)該用上下山的路程÷2。
例12:一項(xiàng)工作,甲單獨(dú)做要4天完成,乙單獨(dú)做要5天完成。兩人合做要多少天完成?
其實(shí),把總工作量看作“1”,這個(gè)“1”就是參數(shù),如果把總工作量看作“2、3、4……”都可以,只不過看作“1”運(yùn)算最方便。
9、排除法
排除對(duì)立的結(jié)果叫做排除法。
排除法的邏輯原理是:任何事物都有其對(duì)立面,在有正確與錯(cuò)誤的多種結(jié)果中,一切錯(cuò)誤的結(jié)果都排除了,剩余的只能是正確的結(jié)果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。
例13:為什么說(shuō)除2外,所有質(zhì)數(shù)都是奇數(shù)?
這就要用反證法:比2大的所有自然數(shù)不是質(zhì)數(shù)就是合數(shù)。假設(shè):比2大的質(zhì)數(shù)有偶數(shù),那么,這個(gè)偶數(shù)一定能被2整除,也就是說(shuō)它一定有約數(shù)2。一個(gè)數(shù)的約數(shù)除了1和它本身外,還有別的約數(shù)(約數(shù)2),這個(gè)數(shù)一定是合數(shù)而不是質(zhì)數(shù)。這和原來(lái)假定是質(zhì)數(shù)對(duì)立(矛盾)。所以,原來(lái)假設(shè)錯(cuò)誤。
例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯(cuò))
(2)分?jǐn)?shù)的分子和分母同乘以或同除以一個(gè)相同的數(shù),分?jǐn)?shù)大小不變。(錯(cuò))
10、特例法
對(duì)于涉及一般性結(jié)論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來(lái)解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。
例15:大圓半徑是小圓半徑的2倍,大圓周長(zhǎng)是小圓周長(zhǎng)的(x)倍,大圓面積是小圓面積的(x)倍。
可以取小圓半徑為1,那么大圓半徑就是2。計(jì)算一下,就能得出正確結(jié)果。
例16:正方形的面積和邊長(zhǎng)成正比例嗎?
如果正方形的邊長(zhǎng)為a,面積為s。那么,s:a=a(比值不定)
所以,正方形的面積和邊長(zhǎng)不成正比例。
11、化歸法
通過某種轉(zhuǎn)化過程,把問題歸結(jié)到一類典型問題來(lái)解題的方法叫做化歸法;瘹w是知識(shí)遷移的重要途徑,也是擴(kuò)展、深化認(rèn)知的首要步驟。化歸法的邏輯原理是,事物之間是普遍聯(lián)系的;瘹w法是一種常用的辯證思維方法。
例17:某制藥廠生產(chǎn)一批防“非典”藥,原計(jì)劃25人14天完成,由于急需,要提前4天完成,需要增加多少人?
這就需要在考慮問題時(shí),把“總工作日”化歸為“總工作量”。
例18:超市運(yùn)來(lái)馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯占25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運(yùn)來(lái)西紅柿多少千克?
需要把“西紅柿和豇豆的重量比4:5”化歸為“各占總重量的百分之幾”,也就是把比例應(yīng)用題化歸為分?jǐn)?shù)應(yīng)用題。
數(shù)學(xué)解題方法9
高考數(shù)學(xué)臨場(chǎng)解題策略
的特點(diǎn)是以解題的高低為標(biāo)準(zhǔn)的一次性選拔,這就使得臨場(chǎng)發(fā)揮顯得尤為重要,研究和總結(jié)臨場(chǎng)解題策略,進(jìn)行應(yīng)試訓(xùn)練和輔導(dǎo),已成為輔導(dǎo)的重要內(nèi)容之一,正確運(yùn)用臨場(chǎng)解題策略,不僅可以預(yù)防各種障礙造成的不合理丟分和計(jì)算失誤及筆誤,而且能運(yùn)用科學(xué)的檢索,建立神經(jīng)聯(lián)系,挖掘和的潛能,考出最佳成績(jī)。
一、調(diào)理思緒,提前進(jìn)入數(shù)學(xué)情境
考前要摒棄雜念,排除干擾思緒,使大腦處于“空白”狀態(tài),創(chuàng)設(shè)數(shù)學(xué)情境,進(jìn)而醞釀數(shù)學(xué)思維,提前進(jìn)入“角色”,通過清點(diǎn)用具、暗示重要知識(shí)和方法、提醒常見解題誤區(qū)和自己易出現(xiàn)的錯(cuò)誤等,進(jìn)行針對(duì)性的自我安慰,從而減輕壓力,輕裝上陣,穩(wěn)定情緒、增強(qiáng)信心,使思維單一化、數(shù)學(xué)化、以平穩(wěn)自信、積極主動(dòng)的心態(tài)準(zhǔn)備應(yīng)考。
二、“內(nèi)緊外松”,集中注意,消除焦慮怯場(chǎng)
集中注意力是的保證,一定的神經(jīng)亢奮和緊張,能加速神經(jīng)聯(lián)系,有益于積極思維,要使注意力高度集中,思維異常積極,這叫內(nèi)緊,但緊張程度過重,則會(huì)走向反面,形成怯場(chǎng),產(chǎn)生焦慮,抑制思維,所以又要清醒愉快,放得開,這叫外松。
三、沉著應(yīng)戰(zhàn),確保旗開得勝,以利振奮精神
良好的開端是成功的一半,從考試的心理角度來(lái)說(shuō),這確實(shí)是很有道理的,拿到后,不要急于求成、立即下手解題,而應(yīng)通覽一遍整套,摸透題情,然后穩(wěn)操一兩個(gè)易題熟題,讓自己產(chǎn)生“旗開得勝”的快意,從而有一個(gè)良好的開端,以振奮精神,鼓舞信心,很快進(jìn)入最佳思維狀態(tài),即發(fā)揮心理學(xué)所謂的“門坎效應(yīng)”,之后做一題得一題,不斷產(chǎn)生正激勵(lì),穩(wěn)拿中低,見機(jī)攀高。
四、“六先六后”,因人因卷制宜
在通覽全卷,將簡(jiǎn)單題順手完成的情況下,情緒趨于穩(wěn)定,情境趨于單一,大腦趨于亢奮,思維趨于積極,之后便是發(fā)揮臨場(chǎng)解題能力的黃金季節(jié)了。這時(shí),考生可依自己的解題習(xí)慣和基本功,結(jié)合整套試題結(jié)構(gòu),選擇執(zhí)行“六先六后”的戰(zhàn)術(shù)原則。
。保纫缀箅y。就是先做簡(jiǎn)單題,再做綜合題。應(yīng)根據(jù)自己的實(shí)際,果斷跳過啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。
。玻仁旌笊。通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處。對(duì)后者,不要驚慌失措。應(yīng)想到試題偏難對(duì)所有考生也難。通過這種暗示,確保情緒穩(wěn)定。對(duì)全卷整體把握之后,就可實(shí)施先熟后生的策略,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。
。常韧螽悾褪钦f(shuō),先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過急、過頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力,
。矗刃『蟠蟆P☆}一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過,應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗
5.先點(diǎn)后面,近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問題的解決又為后面問題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面
。叮雀吆蟮。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。
五、一“慢”一“快”,相得益彰
有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。
六、確保運(yùn)算準(zhǔn)確,立足一次成功
數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟。假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。
七、講求規(guī)范書寫,力爭(zhēng)既對(duì)又全
考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)非因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷的第一印象不良,進(jìn)而使閱卷認(rèn)為考生不認(rèn)真、基本功不過硬、“感情分”也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”!皶鴮懸ふ砻婺艿梅帧敝v的也正是這個(gè)道理。
八、面對(duì)難題,講究策略,爭(zhēng)取得分
會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得,而更多的問題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。
。保辈浇獯。對(duì)一個(gè)疑難問題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題策略是:將它劃分為一個(gè)個(gè)子問題或一系列的步驟,先解決問題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中 高中語(yǔ)文,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。
。玻浇獯稹=忸}過程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過這一步,寫出后繼各步,一直做到底;另外,若題目有兩問,第一問做不上,可以第一問為“已知”,完成第二問,這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。
九、以退求進(jìn),立足特殊,發(fā)散一般
對(duì)于一個(gè)較一般的問題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等?傊,退到一個(gè)你能夠解決的程度上,通過對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。
十、執(zhí)果索因,逆向思考,正難則反
對(duì)一個(gè)問題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展。順向推有困難就逆推,直接證有困難就反證。如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。
十一、回避結(jié)論的肯定與否定,解決探索性問題
對(duì)探索性問題,不必追求結(jié)論的“是”與“否”、“有”與“無(wú)”,可以一開始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。
十二、應(yīng)用性問題思路:面—點(diǎn)—線
解決應(yīng)用性問題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”。如此將應(yīng)用性問題轉(zhuǎn)化為純數(shù)學(xué)問題。當(dāng)然,求解過程和結(jié)果都不能離開實(shí)際背景。
高三數(shù)學(xué)一輪復(fù)習(xí)重頭戲:函數(shù)知識(shí)立體網(wǎng)絡(luò)
“函數(shù)”是高中數(shù)學(xué)中起聯(lián)接和支撐作用的主干知識(shí),也是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。其知識(shí)、觀點(diǎn)、思想和方法貫穿于高中代數(shù)的全過程,同時(shí)也應(yīng)用于幾何問題的解決。因此,在高考中函數(shù)是一個(gè)極其重要的部分,而對(duì)函數(shù)的復(fù)習(xí)則是高三數(shù)學(xué)第一輪復(fù)習(xí)的重頭戲。
注重對(duì)概念的理解
函數(shù)部分的一個(gè)鮮明特點(diǎn)是概念多,對(duì)概念理解的要求高。而在實(shí)際的復(fù)習(xí)中,學(xué)生對(duì)此可能不是很重視,其實(shí),概念能突出本質(zhì),產(chǎn)生解決問題的方法。對(duì)概念不重視,題目一定也做不好。
就高考而言,直接針對(duì)函數(shù)概念的考題也不少,例如05年上海春季高考數(shù)學(xué)卷的第16題就是考察學(xué)生是否理解函數(shù)最大值的概念。在高中數(shù)學(xué)的代數(shù)證明問題中,函數(shù)問題是最多最突出的一個(gè)部分,如函數(shù)的單調(diào)性、奇偶性、周期性的.證明等等,而用定義法判斷和證明這些性質(zhì)往往是最直接有效的方法。上海卷連續(xù)兩年都考查了這方面的內(nèi)容與方法,如06年文、理科的第22題,考查的是函數(shù)的單調(diào)性、值域與最值,07年的第19題,文科考察的是函數(shù)奇偶性的判斷與證明,理科在此基礎(chǔ)上還考察了函數(shù)單調(diào)性。
構(gòu)建知識(shí)、方法與技能網(wǎng)
當(dāng)問到學(xué)生類似于“函數(shù)主要有哪些內(nèi)容?”等問題時(shí),學(xué)生的回答大多是一些零散的數(shù)學(xué)名詞或局部的細(xì)節(jié),這說(shuō)明學(xué)生對(duì)知識(shí)還缺少整體把握。所以復(fù)習(xí)的首要任務(wù)是立足于教材,將高中所學(xué)的函數(shù)知識(shí)進(jìn)行系統(tǒng)梳理,用簡(jiǎn)明的圖表形式把基礎(chǔ)知識(shí)進(jìn)行有機(jī)的串聯(lián),以便于找出自己的缺漏,明確復(fù)習(xí)的重點(diǎn),合理安排復(fù)習(xí)計(jì)劃。
就函數(shù)部分而言,大體分為三個(gè)層次的內(nèi)容:1、函數(shù)的概念與基本性質(zhì),主要有函數(shù)的概念與運(yùn)算、單調(diào)性、奇偶性與對(duì)稱性、周期性、最值與值域、圖像等。2、一些簡(jiǎn)單函數(shù)的研究,主要是二次函數(shù)、冪、指、對(duì)函數(shù)等。3、函數(shù)綜合與實(shí)際應(yīng)用問題,如函數(shù)-方程-不等式的關(guān)系與應(yīng)用,用函數(shù)思想解決的實(shí)際應(yīng)用問題等。
當(dāng)然,在這個(gè)過程中也發(fā)現(xiàn),學(xué)生梳理知識(shí)的過程過于被動(dòng)、機(jī)械,只是將課本或是參考書中的內(nèi)容抄在本子上,缺少了自己的認(rèn)識(shí)與理解,將知識(shí)與方法割裂開來(lái),整理的東西成了空中樓閣,自然沒什么用。這時(shí),就需對(duì)每一個(gè)內(nèi)容細(xì)化,問問自己復(fù)習(xí)這個(gè)內(nèi)容時(shí)需要解決好哪些問題,以此為載體來(lái)提煉與總結(jié)基本方法。
以函數(shù)的單調(diào)性為例,可以從哪些問題入手復(fù)習(xí)呢?問題一:什么是函數(shù)的單調(diào)性?可以借助一些概念的辨析題來(lái)幫助理解。問題二:如何判斷和證明一個(gè)函數(shù)在某個(gè)區(qū)間上的單調(diào)性?對(duì)這個(gè)問題的解決,需要的知識(shí)基礎(chǔ)有:理解函數(shù)單調(diào)性的概念,熟知所學(xué)習(xí)過的各種基本函數(shù)(如一次函數(shù)、二次函數(shù)、反比例函數(shù)、冪、指、對(duì)函數(shù)等)的單調(diào)性,和函數(shù)(如y=x+ax(a≠0))以及簡(jiǎn)單的復(fù)合函數(shù)單調(diào)性等;镜姆椒ㄖ饕抢脝握{(diào)性的定義、以及不等式的性質(zhì)進(jìn)行判斷和證明。問題三:函數(shù)的單調(diào)性有哪些簡(jiǎn)單應(yīng)用?主要的應(yīng)用是求函數(shù)的最值,此外還可能涉及到不等式、比較大小等問題。最后還可以進(jìn)一步總結(jié)易錯(cuò)、易漏點(diǎn),如討論函數(shù)的單調(diào)性必須在其定義域內(nèi)進(jìn)行,兩個(gè)單調(diào)函數(shù)的積函數(shù)的單調(diào)性不確定等。
抓典型問題強(qiáng)化訓(xùn)練
高三學(xué)生在復(fù)習(xí)中大都愿意花大量時(shí)間做題,追求解題技巧,雖然這樣做有一定的作用,但題目做得太多太雜,未必有利于基本方法的落實(shí)。其實(shí)對(duì)于每一個(gè)知識(shí)點(diǎn)都有典型問題,抓住它們進(jìn)行訓(xùn)練,將同一知識(shí),同一方法的問題集中在一起練習(xí),并努力使自己表達(dá)規(guī)范、正確,相信能達(dá)到更高效的復(fù)習(xí)效果。
還是以函數(shù)的單調(diào)性的判斷與證明為例,一般也就兩類典型問題。第一是正確判斷與證明某個(gè)函數(shù)的單調(diào)性,寫出單調(diào)區(qū)間,要注意函數(shù)的各種形式,如分式的(如y=x+32x+1),和函數(shù)(如y=x+(a≠0)),簡(jiǎn)單的復(fù)合函數(shù)(如y=log2(x2-2x-3)),以及帶有根式和絕對(duì)值的等等。第二是它的逆問題,知道函數(shù)在某個(gè)區(qū)間上的單調(diào)性如何求字母參數(shù)的取值范圍,如函數(shù)y=ax2+x+2在區(qū)間[5,10]上遞增,求實(shí)數(shù)a的取值范圍等。
另一方面,可以在同一個(gè)問題的背景下,自己做一些小小的變化與發(fā)展,從中做一些深入的探究。例如將函數(shù)y=log2(x2-2x-3)變化為y =loga(x2-2x-3)單調(diào)性會(huì)怎樣變化?如果變化為y=log2(ax2-2x-3)情況又如何?再?gòu)?fù)雜一些,如變化為y=loga(x2-2x -a)呢?反之,如果函數(shù)y=log2(ax2-2x-3)在區(qū)間(-∞,1)上單調(diào)遞減,a的取值范圍是什么?在此基礎(chǔ)上再想一想還能提出什么問題來(lái)研究呢?例如函數(shù)y=log2(ax2-2x-3)的值域?yàn)镽,a的取值范圍是什么?函數(shù)y=log2(ax2-2x-3)是否可以有最大值,如果有,a的取值范圍是什么?對(duì)自己提出的問題加以解決,能使自己的復(fù)習(xí)更有針對(duì)性,真正掌握解題的規(guī)律和方法,并幫助自己跳出盲目的題海戰(zhàn)。
數(shù)學(xué)解題方法10
反證法
反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。
用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
等(面或體)積法
平面(立體)幾何中講的面積(體積)公式以及由面積(體積)公式推出的與面積(體積)計(jì)算有關(guān)的性質(zhì)定理,不僅可用于計(jì)算面積(體積),而且用它來(lái)證明(計(jì)算)幾何題有時(shí)會(huì)收到事半功倍的效果。運(yùn)用面積(體積)關(guān)系來(lái)證明或計(jì)算幾何題的方法,稱為等(面或體)積法,它是幾何中的一種常用方法。
用歸納法或分析法證明幾何題,其困難在添置輔助線。等(面或體)積法的特點(diǎn)是把已知和未知各量用面積(體積)公式聯(lián)系起來(lái),通過運(yùn)算達(dá)到求證的結(jié)果。所以用等(面或體)積法來(lái)解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計(jì)算,有時(shí)可以不添置補(bǔ)助線,即使需要添置輔助線,也很容易考慮到。
幾何變換法
在數(shù)學(xué)問題的研究中,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的`變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識(shí)和基本技能,從而增大了試卷的容量和知識(shí)覆蓋面。填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識(shí)復(fù)蓋面廣,評(píng)卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計(jì)算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計(jì)算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。
數(shù)學(xué)解題方法11
減少初中解題錯(cuò)誤的方法是預(yù)防和排除干擾。為此,要抓好課前、課內(nèi)、 課后三個(gè)環(huán)節(jié)。
(一)課前準(zhǔn)備要有預(yù)見性
預(yù)防錯(cuò)誤的發(fā)生,是減少初中學(xué)生解題錯(cuò)誤的主要方法。講課之前,如果能預(yù)見到學(xué)生學(xué)習(xí)本課內(nèi)容可能產(chǎn)生的錯(cuò)誤,就能夠在課內(nèi)講解時(shí)有意識(shí)地指出并加以強(qiáng)調(diào),從而有效地控制錯(cuò)誤的發(fā)生。
例如,學(xué)習(xí)方程x/0.7-(0.17-0.2x)/0.03=1之前,要預(yù)見到本題要用分式的基本性質(zhì)與等式的性質(zhì),兩者有可能混淆,因而要在復(fù)習(xí)時(shí)準(zhǔn)備一些分?jǐn)?shù)的基本性質(zhì)與等式的性質(zhì)的練習(xí),弄清兩者的不同,避免產(chǎn)生混亂與錯(cuò)誤。因此學(xué)習(xí)時(shí),要仔細(xì)研究正文中的防錯(cuò)文字、例題后的注意、小結(jié)與復(fù)習(xí)中的'應(yīng)該注意的幾個(gè)問題等,能夠預(yù)先明了容易出錯(cuò)之處,防患于未然。如果出現(xiàn)問題而未查覺,錯(cuò)誤沒有得到及時(shí)的糾正,則遺患無(wú)窮,不僅影響當(dāng)時(shí)的學(xué)習(xí),還會(huì)影響以后的學(xué)習(xí)。因此,預(yù)見錯(cuò)誤并有效防范能夠?yàn)榻沂惧e(cuò)誤、消滅錯(cuò)誤打下基礎(chǔ)。
(二)課內(nèi)學(xué)習(xí)要有針對(duì)性
在課內(nèi)學(xué)習(xí)時(shí),要對(duì)可能出現(xiàn)的問題進(jìn)行針對(duì)性的學(xué)習(xí)。對(duì)于容易混淆的概念,要用對(duì)比的方法,弄清它們的區(qū)別和聯(lián)系。對(duì)于規(guī)律,應(yīng)搞清它們的來(lái)源,分清它們的條件和結(jié)論,了解它們的用途和適用范圍,以及應(yīng)用時(shí)應(yīng)注意的問題。展示揭示錯(cuò)誤、排除錯(cuò)誤的手段,會(huì)識(shí)別錯(cuò)誤、改正錯(cuò)誤。對(duì)錯(cuò)誤回答,要分析其原因,進(jìn)行針對(duì)性講解,利用反面知識(shí)鞏固正面知識(shí)。課堂練習(xí)是發(fā)現(xiàn)錯(cuò)誤的另一條途徑,出現(xiàn)問題,及時(shí)解決?傊,要通過課堂教學(xué),不僅教會(huì)學(xué)生知識(shí),而且要學(xué)會(huì)識(shí)別對(duì)錯(cuò),知錯(cuò)能改。
(三)課后學(xué)習(xí)要有總結(jié)性
要認(rèn)真分析作業(yè)中的問題,總結(jié)出典型錯(cuò)誤,加以評(píng)述。通過講評(píng),進(jìn)行適當(dāng)?shù)膹?fù)習(xí)與總結(jié),也要再經(jīng)歷一次調(diào)試與修正的過程,增強(qiáng)識(shí)別、改正錯(cuò)誤的能力。
數(shù)學(xué)解題方法12
預(yù)防錯(cuò)誤的發(fā)生,是減少初中學(xué)生解題錯(cuò)誤的主要方法。講課之前,教師如果能預(yù)見到學(xué)生學(xué)習(xí)本課內(nèi)容可能產(chǎn)生的錯(cuò)誤,就能夠在課內(nèi)講解時(shí)有意識(shí)地指出并加以強(qiáng)調(diào),從而有效地控制錯(cuò)誤的發(fā)生。
例如,講解方程x/0.7-(0.17-0.2x)/0.03=1之前,要預(yù)見到本題要用分式的基本性質(zhì)與等式的`性質(zhì),兩者有可能混淆,因而要在復(fù)習(xí)提 問時(shí)準(zhǔn)備一些分?jǐn)?shù)的基本性質(zhì)與等式的性質(zhì)的練習(xí),幫助學(xué)生弄清兩者的不同,避免產(chǎn)生混亂與錯(cuò)誤。
因此備課時(shí),要仔細(xì)研究教科書正文中的防錯(cuò)文字、例題后的注意、小結(jié)與復(fù)習(xí)中的應(yīng)該注意的幾個(gè)問題等,同時(shí)還要揣摸學(xué)生學(xué)習(xí)本課內(nèi)容的心理過程,授業(yè)解惑,使學(xué)生預(yù)先明了容易出錯(cuò)之處,防患于未然。
如果學(xué)生出現(xiàn)問題而未查覺,錯(cuò)誤沒有得到及時(shí)的糾正,則遺患無(wú)窮,不僅影響當(dāng)時(shí)的學(xué)習(xí),還會(huì)影響以后的學(xué)習(xí)。因此,預(yù)見錯(cuò)誤并有效防范能夠?yàn)榻沂惧e(cuò)誤、消滅錯(cuò)誤打下基礎(chǔ)。
通過上面對(duì)減少初中數(shù)學(xué)解題錯(cuò)誤方法的知識(shí)內(nèi)容講解,相信可以很好的幫助同學(xué)們對(duì)數(shù)學(xué)題目的解答,同學(xué)們認(rèn)真學(xué)習(xí)哦。
數(shù)學(xué)解題方法13
對(duì)于數(shù)學(xué)解題中幾何變換法的知識(shí),同學(xué)們需要掌握下面的內(nèi)容。
幾何變換法
在數(shù)學(xué)問題的研究中,,常常運(yùn)用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡(jiǎn)單性的問題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的.習(xí)題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。
另一方面,也可將變換的觀點(diǎn)滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運(yùn)動(dòng)中的研究結(jié)合起來(lái),有利于對(duì)圖形本質(zhì)的認(rèn)識(shí)。
幾何變換包括:(1)平移;(2)旋轉(zhuǎn);(3)對(duì)稱。
上面對(duì)幾何變換法的講解學(xué)習(xí)之后,相信同學(xué)們已經(jīng)很好的掌握了上面的解題方法,希望可以很好的幫助同學(xué)們解答數(shù)學(xué)題目。
數(shù)學(xué)解題方法14
人說(shuō)幾何很困難,難點(diǎn)就在輔助線。 初中數(shù)學(xué)幾何證明題輔助線怎么畫輔助線,如何添?把握定理和概念。 還要刻苦加鉆研,找出規(guī)律憑經(jīng)驗(yàn)。 圖中有角平分線,可向兩邊作垂線。 也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來(lái)添。 角平分線加垂線,三線合一試試看。 線段垂直平分線,常向兩端把線連。 要證線段倍與半,延長(zhǎng)縮短可試驗(yàn)。 三角形中兩中點(diǎn),連接則成中位線。 三角形中有中線,延長(zhǎng)中線等中線。 平行四邊形出現(xiàn),對(duì)稱中心等分點(diǎn)。 梯形里面作高線,平移一腰試試看。 平行移動(dòng)對(duì)角線,補(bǔ)成三角形常見。 證相似,比線段,添線平行成習(xí)慣。 等積式子比例換,尋找線段很關(guān)鍵。
斜邊上面作高線,比例中項(xiàng)一大片。 半徑與弦長(zhǎng)計(jì)算,弦心距來(lái)中間站圓上若有一切線,切點(diǎn)圓心半徑連。 切線長(zhǎng)度的計(jì)算,勾股定理最方便。 要想證明是切線,半徑垂線仔細(xì)辨。 是直徑,成半圓,想成直角徑連弦。 弧有中點(diǎn)圓心連,垂徑定理要記全。 圓周角邊兩條弦,直徑和弦端點(diǎn)連。弦切角邊切線弦,同弧對(duì)角等找完。要想作個(gè)外接圓,各邊作出中垂線。還要作個(gè)內(nèi)接圓,內(nèi)角平分線夢(mèng)圓。如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點(diǎn)公切線。若是添上連心線,切點(diǎn)肯定在上面。要作等角添個(gè)圓,證明題目少困難。輔助線,是虛線,畫圖注意勿改變。假如圖形較分散,對(duì)稱旋轉(zhuǎn)去實(shí)驗(yàn);咀鲌D很關(guān)鍵,平時(shí)掌握要熟練。解題還要多心眼,經(jīng)?偨Y(jié)方法顯。切勿盲目亂添線,方法靈活應(yīng)多變。分析綜合方法選,困難再多也會(huì)減。虛心勤學(xué)加苦練,成績(jī)上升成直線。幾何證題難不難,關(guān)鍵常在輔助線;知中點(diǎn)、作中線,中線處長(zhǎng)加倍看;
底角倍半角分線,有時(shí)也作處長(zhǎng)線
公共角、公共邊,隱含條件須挖掘; 全等圖形多變換,旋轉(zhuǎn)平移加折疊; 中位線、常相連,出現(xiàn)平行就好辦; 四邊形、對(duì)角線,比例相似平行線;梯形問題好解決,平移腰、作高線;兩腰處長(zhǎng)義一點(diǎn),亦可平移對(duì)角線;正余弦、正余切,有了直角就方便;特殊角、特殊邊,作出垂線就解決;實(shí)際問題莫要慌,數(shù)學(xué)建模幫你忙;圓中問題也不難,下面我們慢慢談;弦心距、要垂弦,遇到直徑周角連;切點(diǎn)圓心緊相連,切線常把半徑添;兩圓相切公共線,兩圓相交公共弦;切割線,連結(jié)弦,兩圓三圓連心線;基本圖形要熟練,復(fù)雜圖形多分解;以上規(guī)律屬一般,靈活應(yīng)用才方便。
數(shù)學(xué)解題方法15
數(shù)字變化類規(guī)律題解題技巧
(1)標(biāo)出序列號(hào):找規(guī)律的題目,通常按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律。找出的規(guī)律,通常包序列號(hào)。所以,把變量和序列號(hào)放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘;
(2)公因式法:每位數(shù)分成最小公因式相乘,然后再找規(guī)律,看是不是與n2、n3,或2n、3n,或2n、3n有關(guān);
(3)有的可對(duì)每位數(shù)同時(shí)減去第一位數(shù),成為第二位開始的新數(shù)列,然后用(1)、(2)、技巧找出每位數(shù)與位置的關(guān)系.再在找出的規(guī)律上加上第一位數(shù),恢復(fù)到原來(lái);
(4)有的可對(duì)每位數(shù)同時(shí)加上,或乘以,或除以第一位數(shù),成為新數(shù)列,然后,在再找出規(guī)律,并恢復(fù)到原來(lái);
(5)同技巧(3)、(4)一樣,有的可對(duì)每位數(shù)同加、或減、或乘、或除同一數(shù)(一般為1、2、3)。當(dāng)然,同時(shí)加、或減的可能性大一些,同時(shí)乘、或除的不太常見;
(6)觀察一下,能否把一個(gè)數(shù)列的奇數(shù)位置與偶數(shù)位置分開成為兩個(gè)數(shù)列,再分別找規(guī)律。
數(shù)學(xué)找規(guī)律題的技巧
標(biāo)出序列號(hào)
找規(guī)律的題目,通常按照一定的順序給出一系列量,要求我們根據(jù)這些已知的量找出一般規(guī)律。找出的規(guī)律,通常包序列號(hào)。所以,把變量和序列號(hào)放在一起加以比較,就比較容易發(fā)現(xiàn)其中的奧秘。
看增幅
如增幅相等(實(shí)為等差數(shù)列):對(duì)每個(gè)數(shù)和它的前一個(gè)數(shù)進(jìn)行比較,如增幅相等,則第n個(gè)數(shù)可以表示為:a1+(n-1)b,其中a1為數(shù)列的'第一位數(shù),b為增幅,(n-1)b為第一位數(shù)到第n位的總增幅。然后再簡(jiǎn)化代數(shù)式a1+(n-1)b。
如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,即二級(jí)等差數(shù)列)。如增幅分別為3、5、7、9,說(shuō)明增幅以同等幅度增加。此種數(shù)列第n位的數(shù)也有一種通用求法。
總體思路
從具體實(shí)際的問題出發(fā),觀察各個(gè)數(shù)量的特點(diǎn)及相互之間的變化規(guī)律;由此及彼,合理聯(lián)想,大膽猜想;善于類比,從不同事物中發(fā)現(xiàn)相似或相同點(diǎn);總結(jié)規(guī)律,得出結(jié)論,并驗(yàn)證結(jié)論正確與否;善于變化思維方式,做到事半功倍,探索規(guī)律是一種思維活動(dòng)及思維從特殊到一半的跳躍,需要有一定的歸納與綜合能力,當(dāng)已知的數(shù)據(jù)有很多組時(shí),需要仔細(xì)觀察,反復(fù)比較才能準(zhǔn)確找出規(guī)律。
找規(guī)律題的技巧方法
先觀察。做找規(guī)律題,拿到題目后,先不要著急做題,首先應(yīng)該先去觀察。主要是觀察題目和題型,通過觀察,揣摩下出題者的用意,有些簡(jiǎn)單的題,通過觀察就可以得到想要的答案的。所以拿到題目時(shí),先以觀察為主,觀察題目,觀察數(shù)字,觀察圖畫,能夠從觀察中找到答案那最好不過了。
列條件。做找規(guī)律題,在觀察完題目后,假如還是沒有找到準(zhǔn)確的答案,那就建議你要去學(xué)會(huì)列條件了。把題目已知的條件列出來(lái),變著方式和方法去列,通過動(dòng)手動(dòng)筆,說(shuō)不定你就能找到你想要的答案的。
去比較。做找規(guī)律題,要學(xué)會(huì)去比較。比較就是比較題目的差異。特別是圖畫型找規(guī)律題,多花點(diǎn)心思去比較圖畫的異同點(diǎn),從中找到對(duì)應(yīng)的答案,比一比,說(shuō)不定就把答案比出來(lái)了。
大膽猜。做找規(guī)律題,要敢于大膽猜。有些題目,你看了半天也沒有找到解題的思路或者是方法,也沒有發(fā)現(xiàn)具體的規(guī)律,這個(gè)時(shí)候,建議你嘗試去猜規(guī)律,猜了后再來(lái)一題一題的試,能夠把題目試出來(lái)最好,假如試不出來(lái),又再去猜一種規(guī)律,又再來(lái)試。
用公式。做找規(guī)律題,要善于用公式。特別是在做一些數(shù)列題或者數(shù)字題的時(shí)候,有可能你觀察半天都找不到規(guī)律,但是你去用相關(guān)的數(shù)學(xué)公式一套,多半就把規(guī)律套出來(lái)了。所以去記住一些數(shù)學(xué)公式也很重要。
巧假設(shè)。做找規(guī)律題,要敢于去假設(shè)。有些題,要想找到規(guī)律,在必要的時(shí)候要學(xué)會(huì)去假設(shè),假設(shè)條件,假設(shè)規(guī)律,假設(shè)結(jié)果,通過假設(shè),說(shuō)不定你就能找到題目的規(guī)律了。
憑感覺。做找規(guī)律題,有時(shí)也需要憑感覺。在用盡了各種辦法后,都還是把題目的規(guī)律摸不透,那就建議你要去憑感覺做題了。實(shí)在找不出規(guī)律,遇到選擇題的話,就憑感覺去選一個(gè),能不能做對(duì),就完全看運(yùn)氣了。
【數(shù)學(xué)解題方】相關(guān)文章:
高一數(shù)學(xué)解題方法03-03
高一數(shù)學(xué)解題套路03-08
數(shù)學(xué)解題的七種技巧12-04
關(guān)于數(shù)學(xué)解題技巧的三個(gè)口訣09-15
高三數(shù)學(xué)應(yīng)重視綜合素質(zhì)提高解題能力08-23
電學(xué)的解題方法07-24